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THE BAND STRUCTURE AND FERMI SURFACE OF MAGNESIUM
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A calculation of the band structure of magnesium metal is performed by means of the orthogonalized
plane wave method, in a similar way to that done by Heine for aluminium. The various contribu-
tions to the lattice potential are carefully analyzed and computed in order to obtain a final accuracy
of about 0-035 Ry, including the errors due to convergence of the secular equation. Group-
theory methods are used to evaluate the energy levels at points of symmetry and to test the accuracy
of the numerical methods. The Fermi energy is obtained by comparison with the free-electron
model. The Fermi surface is then described with emphasis on its geometrical and topographical
properties to allow for direct comparison with experiment.
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1. INTRODUCTION

The rapid development in the last 5 years of several experimental techniques, such as the
de Haas—van Alpen effect and cyclotron resonance, which yield accurate information on
the properties of the electronic structure of metals, has produced a revival of the calculation
of detailed band structures in terms of which experimental data could be interpreted. On
the other hand, the increasing understanding of the behaviour of electrons in a metal, mainly
the effects of electron-electron interactions, allows a better determination of the effective
potential acting on the conduction electrons and consequently the possibility of computing
accurate band structures using some of the well-known numerical techniques (Reitz 1955;

Y B \

— Herman 1958). In this context magnesium stands as a very interesting and promising
§ > metal. The number of core electrons is fairly low and good determinations of the Hartree—
@) E Fock function of the Mg?* ion (Jacque-Yost 1940) and atomic Mg (Biermann & Trefftz
= 1949) are available; its position in the periodic table is adjacent to Na (Cohen & Heine
E 8 1958) and Al (Heine 1957), metals that are known to be free-electron-like and for which the
~w orthogonalized-plane-wave (OPW) method is rapidly convergent. In addition, several

experiments for determining properties of the Fermi surface of magnesium (Priestley,
to be published ; Shoenberg 1960; Fawcett 1961; Gordon, Joseph & Eck 1960) were under
way when the present calculation was started, and a fairly accurate theoretical model
was necessary in order to have a solid standpoint for the interpretation of the experimental
information.
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56 L. M. FALICOV

This paper describes the procedure and results of a band structure calculation for mag-
nesium metal, by the use of the OPW method (Heine 1957; Woodruff 1957). The various
contributions to the crystal potential acting on the conduction electrons are discussed in
§2. They are divided into eleven items which are computed in turn together with an esti-
mate of their contributions to the final error. Section 3 is concerned with the OPWs, the
determination of their coefficients, the setting down of the secular equations for the band
energies and their numerical solution. Section 4 is devoted to the study of the symmetry
properties of the lattice. They have been used to factorize the secular equation and to obtain
the band energy of the symmetry points with greater accuracy. These points are used to
check the convergence of the method and to determine the errors due to the truncation of
the secular equation. The accuracy of the complete scheme and the final errors in the band
energies are discussed in §5. Finally, the estimation of the Fermi energy and the shape and
dimensions of the Fermi surface are described in §6, as well as some of its topological
properties.

2. THE LATTICE POTENTIAL

The units used throughout this paper are such that m = # = ¢ = 1. With this choice the
unit of length turns out to be the Bohr radius «,. The energy is expressed in rydbergs (Ry);

ay = 0-529 A,
1Ry = 13-6¢V.
L H
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Ficure 1. The Brillouin zone in the h.c.p. structure showing points and lines of symmetry.
The size of the zone is given in table 3.

Magnesium crystallizes in a close-packed hexagonal structure (h.c.p.) whose lattice
constants, extrapolated to 0°K are
a= 3189 A = 6-026 q,,
¢=5177A = 97844,
The ratio ¢/a = 1-624 is very near to the perfect packing ratio 1-633. The properties of the
direct and reciprocal lattices are given in tables 1 and 2, respectively. The reduced Brillouin
zone (Herring 1942; Antoncik & Triflaj 1952; Altmann 1958) is shown in figure 1 and the
co-ordinates of the symmetry points, following Herring’s notation (1942), are givenin table 3.
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BAND STRUCTURE AND FERMI SURFACE OF MAGNESIUM 57

TaBLE 1. THE MAGNESIUM H.C.P. DIRECT LATTICE

x y z
t, 0 0 9-784
t, 6-026 0 0
tg —-3-013 5-219 0

(t,) —3-013 —5219 0

unit cell volume 307-68
atomic volume Q, 153-84
atomic radius 7, 3-324

TABLE 2. THE MAGNESIUM RECIPROCAL LATTICE

x Yy z
G, 0 0 0-6422
G, 1-0426 0-6020 0
G, 0 1-2040 0

(Gy) —1-0426 0-6020 0

G,.t; =2n0; (i,j=1,2,3)
volume of the Brillouin zone 0-8062
volume of occupied states 1-6124

radius of the free electron distribution 0-7274
(Fermi momentum)

TABLE 3. SYMMETRY POINTS OF THE MAGNESIUM BRILLOUIN ZONE

orthogonal co-ordinates reciprocal lattice
- A \ f A \ magnitude
point x Y z G, G, G, k

r 0 0 0 0 0 0 0

4 0 0 0-3211 0 0 3 0-3211
M 0-5213 0-3010 0 3 0 0 0-6020
L 0-5213 0-3010 0-3211 3 0 3 0-6823
K 0-6951 0 0 % —% 0 0-6951
K’ 0-3475 0-6020 0 5 % 0 0-6951
H 0-6951 0 0-3211 3 —% 1 0-7657
H 0-3475 0-6020 0-3211 b 1 3 0-7657

As it has been pointed out repeatedly, the main source of errors in any band-structure
calculation is the uncertainty that exists in determining the net potential acting on an elec-
tron moving through the lattice. This uncertainty gave rise, before Heine’s calculation
(1957), to errors in the band energies of the order of 0-2 Ry. The detailed calculation of the
band structure of aluminium done by Heine was the first successful attempt to decrease
this error, reducing it to the order of 0-03 Ry. In the last 5 years extensive studies on the
many-body properties of the electron gas have shown that the one-electron approximation is
justified, at least near the Fermi surface. This result eliminates the main source of conceptual
uncertainty in the setting up of the lattice potential, i.e. the correlation and exchange terms.
Apart from such conceptual problems, errors arise as a result of difficulties in the com-
putation, e.g. the necessity to assume spherically symmetrical potentials around each
nucleus. In any case, by considering and analyzing every contribution we attempt to get a
final error of the order of that obtained by Heine for aluminium. Near the Fermi surface,
where the one-electron approximation strictly holds, our results must be more accurate
and physically reliable; the experimental information will be the final criterion to estimate

the accuracy of the present calculation.
8-2
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58 L. M. FALICOV

Following Heine (1957) we enumerate the various contributions to the potential:
a) potential due to the ion-core,

(b) exchange among ion-core electrons,
(¢) correlation among ion-core electrons,
(d) exchange between conduction and core electrons,

(¢) correlation between conduction and core electrons,

(f) potential due to the conduction electrons,

(g) the deviation from spherical symmetry around the core,
(k) exchange among conduction electrons,

(i) correlation among conduction electrons,

(J) spin-orbit coupling,

(k) self consistency and remaining errors of the whole scheme.

The main contributions come from (@) and (f); (6) (d), (k) and (i) give important cor-
rections; (¢) and (g) give second-order corrections; (j) is negligible in magnitude but
introduces important changes in the topology of the energy surfaces; (¢) is negligible for
magnesium. If (a) to () have been computed correctly, (k) will in general be negligible.

The total potential is expressed as a sum of identical atomic-like potentials centred at
each ion

~— ~—

[

~

Vir) = SU(r—R,]), 21)

Ulr) = —(2/r) Zp(1), (2-2)
where for magnesium Z, must satisfy the two conditions
Zp(0) =12, Zp(0) = 0. (2-3)

The magnesium core electrons 1s, 2s and 2p are tightly bound electrons and their atomic
wave functions, except for phase factors, are not fundamentally disturbed by the presence
of the lattice or the conduction electrons. This means that their crystal wave functions
can be adequately represented by Bloch tight-binding orbitals. Consequently the potential
acting on conduction electrons due to the core, except for exchange and correlation effects,
is the potential seen by a test charge in the neighbourhood of a Mg?* ion. To compute this
potential it is necessary to know the electronic wave functions of Mg+ and to solve Poisson’s
equation for the distribution of charge given by them. These are the standard techniques
used for calculating atomic structures with self-consistent fields (Hartree 1957) and have
been applied to the already computed radial functions of Mg?* (Jacque-Yost 1940) to
obtain the contribution 2Z, to 2Z, (the total potential) shown in table 4. The numerical
integration of the Poisson equation was performed on EDSAC 2, the computer of the
University of Cambridge Mathematical Laboratory, by the use of available standard
routines.

.Correlation among the ion-core electrons is a second-order correction and a rather
unimportant one. It can be computed by expanding the Mg?* electronic wave function in
series of determinants instead of using a single Slater determinant. No detailed calculation
of this sort is available for Mg?*, but it has been performed for Na* (Bernal & Boys 1952).
Heine (1957) has compared the corresponding charge distribution with that obtained
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BAND STRUCTURE AND FERMI SURFACE OF MAGNESIUM 59

TABLE 4. THE LATTICE POTENTIAL

7 2Z, 2z, 27, 2Z, 2Z; 2Z,
0 - 24-000 0-000 0-000 0-000 0-000 24-000
0-025 22:099 —0-004 0-387 —0-045 0-005 22442
0-05 20-417 —0-007 0-693 —0-090 0-009 21-022
0-10 17-780 —0-014 1-118 —0-181 0-019 18-723
0-15 15-809 ; —0-021 1-746 —0-271 0-028 17-292
0-20 14-188 —0-028 0-180 —-0-361 0-038 14-017
0-28 11-993 —0-039 1-040 —0-504 0-053 12-542
0-36 10-160 —0-048 1-338 —0-647 0-068 10-870
0-44 8-661 —0-052 1-586 —0-798 0-083 9-488
0-52 7-472 ; —0-053 1-824 —0-931 0-098 8-409
0-60 6-555 —0:053 2-111 —1-001 0-113 7-654
0-80 5144 —0-043 3-554 —1-484 0-150 7-389
1-00 4-495 —0-029 —2-026 —-1-751 0-188 0-876
1-20 4-211 —-0-016 —0-262 —2-072 0-225 2-086
1-60 ... 4-039 —-0-004 0-016 —2-665 0-300 1-686
2-00 4-008 —0-001 0-018 —3-175 0-375 1-226
2-60 4-001 0-000 0-006 —3-736 0-443 0-713
3-40 4-000 0-000 0-001 —4-000 0-217 0-218
4-20 4-000 0-000 0-000 —4-000 0-005 0-005
500 4-000 0-000 0-000 —4-000 0-000 0-000

Note. The lattice potential is expressed in the form (2-2).

r- theradius in atomic units.

2Z, potential due to the ion-core.

2Z, correlation among ion-core electrons.

2Z, exchange between core and conduction electrons.

2Z, potential due to conduction electrons.

2Z, potential due to the deviation from uniform distribution of conduction electrons around each nucleus.
2Z, the total potential excluding correlation and exchange among conduction electrons.

using the Hartree-Fock approximation in Na* (Hartree & Hartree 1948) and has calculated
the potential due to the difference. This is listed as 2Z, in table 4. As expected, correlation
effects allow the electrons to pack into a smaller volume. The contribution to 2Z,, although
very small, is then negative. The correction due to the difference in atomic number between
Na* and Mg?* is neglected, being unimportant in such a small term. The errors involved
in the potential due to the ion-core electrons (items (a) to (¢)) are orders of magnitude
smaller than the proposed final error, so that no significant error contribution arises from
them.

We now consider the contribution to the potential due to exchange between conduction
and core electrons. If we restrict ourselves to some points of high symmetry in the Brillouin
zone, the wave functions of the conduction electrons have a definite symmetry around
each nucleus, i.e. they behave approximately as an atomic wave function of definite angular
symmetry. For instance, the s-like functions behave essentially like atomic 3s-functions,
except for an amplitude factor. The exchange of such a function with the ion-core electrons,
only important in the ion-core region, is substantially the same as the exchange involving
the Mg atom 3s-function. Using again the well-known methods for computing exchange
in atomic structures, we find that the contribution of the 3s-function to the exchange part
of the Hamiltonian is given by

Vo) = 23000 [9(0) ¥(0) -0, (24)

t = 15,25, 2p,, 2p,» 2b,-
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60 L. M. FALICOV
We express this term as an effective potential Ugs.
Yy (%) = Uss (%) ¥35(%) (2:5)
and in turn, using the radial symmetry of the system, we have
U = —2Z,(r)/r. (2-6)

Y, (x) and 2Z,(r) have been computed by the use of the techniques described by Hartree
(1957), which amount to the solution of a system of differential equations with tabulated
coefficients and known boundary conditions. The functions involved in the calculation are
the Mg?" 1s-, 25-, and 2p-functions (Jacque-Yost 1940) and the Mg atom 3s-function (Bier-
mann & Trefftz 1949) already available in the literature. Theresult 2Z,(r) is shown in table 4.
Equations similar to (2-4), (2-5) and (2-6) exist for 3p-electrons. Itis worth noting that the
exchange potential as expressed by (2:5) is independent of the amplitude of 5, and is
equally valid to a very good approximation for the atomic 3s-function and the lowest
s-like crystal orbitals of the metal.

Heine has calculated the effective exchange potential for the 3s- and 3p-orbitals in
aluminium and has shown that both are very nearly the same over the range where exchange
is important. The error in the energies due to using the s-potential for a p-like function is
less than 0-01 Ry. In Mg most of the conduction band actually occupied by electrons is
s-like or has s-like contributions; so we have chosen the 3s exchange potential to represent
the exchange potential of the whole band. The error involved in this approximation is less
than 0-01 Ry for p-like states or states of higher angular symmetry around the nuclei, and
much less for the rest of the band.

The rather large oscillations of 2Z; near r = 0-18 and = 0-90 are due to the fact that the
exchange term (2-4) does not vanish at the nodes of the radial 3s-function, so that 2Z,
tends to oo near these points. The potential U§: has been smoothed out over a small range
of r near the nodes of the radial 3s-function. The error caused by this approximation is
negligible because the 3s-functions are very small (approximately zero) at those values.

Exchange between the conduction electrons and the various core electrons (item (d)
of the potential) is an additive effect as shown by (2-5). On the other hand, correlation effects
(item (e)) have a very complicated dependence and are difficult to compute. They have
been completely neglected in the present calculation. To estimate the error involved in
this approximation a perturbation calculation has been performed once the band structure
and the crystal wave functions were known, with the use as a perturbation potential of the
contribution of correlation to the separation energy considered as a function of the local
density. The correlation energy per particle ¢, is generally expressed in terms of the para-

meter r, = (3/4mn)3, (2:7)
where 7 is the density of electrons in atomic units. The function ¢ (r,) has different expres-
sions for the various density ranges. In the high density limit (r, < 1) the Gell-Mann &
Brueckner (1957) formula 6, = 0-0622In7,—0-096 (2-8)

was used. For the metallic density region (2 <r < 5-5) the Bohm-Pines interpolation
formula (Pines 1955 ; Noziéres & Pines 1958) was considered the most suitable,

¢, = 0-0311n7,—0-115. (29)
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For the intermediate region (1 <7,<2) a graphically interpolated function joining
smoothly (2-8) and (2-9) was chosen. With ¢,(r,) and the spatial density of electrons being
known as a function of the radius from the nucleus, a perturbation potential (separation

energy) was determined by
1 de,

U=er,) “3dlnr

(2:10)
from which the contribution of the uniformly distributed conduction electrons (7, = 2:638)
was subtracted ; they were already taken into account as item (z) of the potential. The per-
turbation calculation performed with this potential gave a maximum energy shift of
6 x 10~* Ry, which is negligible compared with the other errors.

To compute the potential due to the Coulomb interaction of the conduction electrons
(Hartree approximation), we first assume a spherically symmetric distribution of conduction
electron around each nucleus (item ( f)) and later compute the correction due to the lattice
effects (item (g)). The potential to be considered was that seen by a small test charge and due
to the averaged distribution of the conduction electrons assuming that they do not undergo
exchange. This is a self-consistent problem and because of the laborious calculations in-
volved it has never been rigorously solved for any metal. However, for aluminium Heine
has achieved a rudimentary self-consistency within the desired accuracy (0-03 Ry) and
from his calculation it is possible to see that a uniform distribution of electrons inside the
Wigner—Seitz sphere is a very good approximation. The resulting error is less than 0-01 Ry.
The uniform distribution assumption is known to be good for metals with no d-electrons
(Callaway 1958). Moreover, magnesium is very similar to aluminium in many respects,
and we can be confident that the assumption of a uniform distribution will give the same
accuracy obtained for aluminium by Heine.

The solution of Poisson’s equation

V2U(r) = —8mq (2:11)

for a uniform charge density ¢ corresponding to a total charge of two electrons inside the
Wigner—Seitz sphere of radius 7, = 3-324 is

2Z,(1) = —rU(r) = 23 (" =308) (1<), (2:12)

Values of 2Z, are given in table 4.

A potential due to a uniform density inside the Wigner—Seitz sphere is not entirely valid
unless a correction is made for the region midway between the atoms. If we place a sphere
of radius r, centred at each ionsite, there will be regions in the metal where two neighbouring
spheres overlap and other regions not covered by any sphere. We introduce an additional
potential 2Z; in order to correct for this effect. We followed a procedure similar to that used
by Heine for aluminium, consisting of:

(a) Selection of a set of few points covering the whole lattice, mainly the region midway
between nuclei.

(b) Calculation at these points of a potential V| (r) due to one proton at each lattice
point and a uniform distribution of electrons corresponding to one electron per proton.
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62 L. M. FALICOV

To compute V; we applied the Ewald technique as described by Kittel (1956), but replacing
the lattice of negative ions by a uniform distribution of negative charge.

(¢) Subtraction from V] of the potential V, due to one proton in each lattice point
surrounded by a sphere of radius 7, of uniform charge equivalent to one electron, thus a
potential V; = V|, —V, was obtained.

(d) Multiplication of V; by a suitable constant to take account of the real density of
electrons in magnesium in the regions of the lattice where the correction is important.

(¢) Selection of a constant C and values of a function Uj(r) at certain values of 7 such that

Vy(r) = C+ S Uy ([r ;) (2:13)

agreed with the values of V; computed for the set of selected points. U;(r) was chosen to
vanish for 7 greater than the maximum distance from any point in the crystal to the nearest
ion site.

(f) Graphical interpolation of U; between the computed values and calculation of

2Z4(r) = —rUy(r).

Some values of 2Z; are shown in table 4. This method gives a correction to 2Z; such that
the potential is computed exactly at the selected set of points and varies smoothly over the
whole lattice. In this way we have corrected for lattice effects on the conduction electron
distribution and still have kept the potential in the form (2-1) and (2-2).

The main source of errors in the potential turns out to be the contribution of exchange
and correlation among conduction electrons. In fact the word ‘potential’ is misleading in
this context, since correlation and exchange are many-body effects and must be treated as
such. However, the contributions to the many-body treatment of electrons in metals (Falicov
& Heine 1961) have shown that the independent particle approximation is still valid for
‘dressed’ electrons or holes near the Fermi surface. These ‘dressed’ particles or quasi-
particles interact via a screened weak potential that can be considered as a perturbation
on the independent particle model and treated in a low-order approximation, say the
Hartree-Fock approximation. This screened electron-electron interaction gives rise to a
modification of the single-particle band energies and as such must be considered in any
band-structure calculation. However, the computation of this contribution for electrons in
a lattice amounts to solving extremely difficult equations (Hubbard 1958) whose proper
solution has not yet been attempted. Even for the case of free electrons, i.e. electrons moving
in a background of uniformly distributed positive charge, the calculation of the single-
particle energies is very difficult and the existing formulae are far from being accurate
in comparison with the other terms in the band energies. From the various treatments of
the electron-electron interaction we have chosen for the present calculation the formulae
given by Bohm and Pines (Pines 1955) obtained through a collective motion approach.
In choosing this approximation for magnesium metal we have introduced two different
and appreciable errors: we have taken the errors inherent in the Bohm—Pines treatment
and we have applied a free-electron formula to electrons that move in a crystal lattice.
Bohm and Pines have estimated the error in the correlation energy to be about 15 9%;; the
mean correlation energy in magnesium is about —0-085 Ry so that the error involved in
the Bohm-Pines formula is about 0-013 Ry.
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BAND STRUCTURE AND FERMI SURFACE OF MAGNESIUM 63

It is reasonable to apply the free-electron approximation to the conduction electrons in
magnesium. The screening of the ¢ Fourier components of the Coulomb interaction involves
excitation of electrons by an amount ¢ in k-space. Thus with ¢ of the order &, this will
involve a large fraction of the Fermi distribution. The resulting screened potential will
therefore be very similar to that of a free-electron gas, differing say by a fraction of order ¢,
where ¢ is the fraction of the whole band structure which is severely disturbed by the pre-
sence of the energy gaps. In magnesium ¢ is small because of the small gaps. Thus the screen-
ing of the Coulomb potential is a property of the electron gas as a whole and not sensitive
to the details of the band structure. We may therefore take what we suppose to be the free-
electron screened potential.

We can now calculate the exchange between a Bloch state ¥, and the whole Fermi
distribution. Again there are the strong oscillations near the ion sites, in a volume about
10 9, of the total volume of the crystal, which we neglect. The important result is: even when
¥, has the form of a cosine- or sine-like function, i.e. a standing wave and not plane wave as
in the free electron, because K is at or near the Brillouin zone boundary, the total exchange
with the Fermi distribution is the same as for = exp (ikr). Clearly there are interference
effects when we calculate exchange between two standing waves cos K, r and cosk,r, etc.,
but these all cancel out when the sum of k, over the whole Fermi distribution is performed.

The formula for the one-electron correlation and exchange energy given by Bohm and
Pines (Pines 1955) in the free-electron case is

Me-ar+ B F 2] 0<k<a-pH

0611 (/)’ —1) k3 +-3k2 K3 —K2. ks +k:|
A [1 —2 2kky. + ke k In Bk (L—=p) kp. < k < k5)
(2:14)

0 611
VB.P‘(k) =

where kg is the Fermi momentum, and
B = ark. (2-15)

Several values have been suggested for the constant « (Fletcher & Larson 1958). We have
chosen the original value proposed by Bohm and Pines (Pines 1955),

a = 0-353.

TaBLE 5. THE BouM—PINES POTENTIAL

k Vae. (k) k Ve ()
0-0 —0-3952 0-5 —0-2836
0-1 —0-3894 0-6 —0-2622
0-2 —0-3715 0-7 —0-2414
0-3 —0-3408 0-72 —0-2372

0-4 —0-3078

With the approximation described above, the exchange and correlation among conduction
electron can thus be described in terms of a potential that depends only on K-vector. As
such it does not contribute to the potential 2Z(r) shown in table 4 and it must be added to
the final values of the energy computed by solving the secular equation as described in
§3. Some values of Vyp (k) as given by (2-14) are shown in table 5. The errorin Vg, which

9 Vor. 255. A.
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is estimated to be of about 0-02 Ry, affects the overall band width but its effects on the
shape of the Fermi surface are much less important.

Spin-orbit coupling needs special attention. The magnitude of the spin-orbit energy
increases with atomic number. For silicon, with atomic number 14 which is the element of
group IV closest to magnesium, the spin-orbit splitting at the top of the valence band
amounts to 0:0026 Ry (Herman 1955) : this is an order of magnitude smaller than our total
error and would seem therefore to be negligible. However, it is well known that the presence
of a spin-dependent term in the Hamiltonian may cause the splitting of some degeneracies
in the band energy levels (Elliott 1954). This is particularly important in the h.c.p. structure,
where the sticking-together of the bands at the hexagonal faces of the Brillouin zone is
removed by spin-orbit effects (Cohen & Falicov 1960). We shall neglect the spin-orbit
terms for the time being sinceits quantitative effects are small, but they will be reconsidered
in §6 when we analyze the topological properties of the Fermi surface.

3. THE ORTHOGONALIZED PLANE WAVES AND THE SECULAR EQUATION

Having computed the lattice potential V(r), we compute in four steps the solution of the

Schrédinger equation
[—=V2+V(0)] Vi = Enp Vi (3-1)

for the 24 N electrons of the system, 2N being the number of atoms in the crystal:

(i) Determination of the Bloch tight-binding orbitals required to set up the OPWs,

(i1) selection and calculation of the OPWs (the basis functions),

(iii) setting up of the secular equation, which involves the calculation of the matrix
elements of the Hamiltonian and the overlap matrix in terms of the OPWs,

(iv) solution of the secular equation.
All the numerical computations have been carried out in EDSAC 2; those concerned with
item (i) were performed in a separate program. The remaining three items were computed
in a single complete program, some of whose details are given in the present section.

Since the total potential V(r) is expressed in the form (2-1) as a sum of atomic-like poten-
tials, we first consider the solutions of the atomic-like Schrédinger equation

[=V2+U(N)]uw, = (—E)y, (3-2)

with E, essentially positive. These solutions can be labelled according to the usual notation
for atomic orbitals
t=1s, 25, 2p, 2p, 2p.;

they are the auxiliary ‘core’ functions which we shall need in setting up the OPWs (Heine
1957). We first build up Bloch orbitals out of the u,, which are exact eigenfunctions of the
crystal Hamiltonian (3-1) only if

[ur =R, ur—R,) dr =5, (33)
[lur—R)[2UE-R,) d = Up,,, (34)

Jurx—r) Ur—Ry) ufr—r,) dr = U3, (3-5)
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i.e. there is no overlap between atomic functions or between atomic functions and potentials
of different centres. Although it is not exactly so we assume in what follows that (3-3),
(3-4) and (3-5) are valid for the first five eigenfunctions of (3-2). The error involved in this
approximation is discussed in §5.

Since the h.c.p. structure is not a simple Bravais lattice and has two atoms per unit cell,
the atomic sites R, can be classified in two different groups. With the origin of the lattice
vector system taken at one of the nuclei, the first group of atoms is formed by the atom at the
origin and all the others whose positions are given by vectors of the hexagonal lattice:

st group: R, =R, =t +mt,+nt; (I,m,n = integers).
Each atom of the second group is in a location that differs from a location of the first set by

a vector

v = It +1t, 4 2t,;
gl T3l 3l } (3-6)

2nd group; R, =R;+r.
Hence two different sets of Bloch orbitals exist for each solution of (3:2). These are
(®,,k) = N2 3 u,(r—R) exp (ikR), }

. (3-7)
(B, K) = N+3 u(r—R,—7) exp (ikR).

With the assumptions (3-3) to (3-5), these functions are normalized and orthogonal to each
other:

f((Dsnk)*(‘Dmk')d”_@ Dy bes

and are solutions of (3-1) with
Eyy = Eyy = (—E). (3-8)
To solve (3-2) we have applied the standard techniques used for the calculation of
atomic structures (Hartree 1957). The functions », are expressed in the form

u(r) = (1/r) P(r) ¥,(0, ¢), (3-9)
where the Y’s are normalized spherical harmonics. The results for P, (r) and the correspond-
ing energies E, are shown in table 6. It is worth noting that while assumptions (3-3), to
(3-5) are very well satisfied for the 1s-function because of the negligible values of P,
in the region r ~ 3, this is not so for the 2s- and 2p-functions and the consequent contrlbu-
tion to the total error must be taken into account.-

- We define the orthogonalized plane wave of vector k by

(OPW, k) = A [Q Yexp (ikr) — 3 B (D, K) ], (3:10)
where Q is the volume of the crystal, ’
t=1s, 2s, 2p, pr, 2.,
s=1, 2, ‘
and the (@, k) are defined by (3-7). This is not the only definition that has been used.
The Bloch functions to which the OPWs are orthogonalized do not necessarily have to be

the ‘core’ solutions of (3-1). There is a complete freedom to choose them (Woodruff 1957).
9-2
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But, as proved by Heine (1957), (8:10) is the simplest and most natural formulation and the
one that gives the best convergence for the resulting secular equation.
The orthogonality and normalization condition that determine 4, and B, are

f (OPW,k)* (O, k) d*r = 0, (3:11)

f|(0pw, K)|2d%r = 1. (3-12)

TABLE 6. THE ATOMIC-LIKE FUNCTIONS FOR THE CORE ELECTRONS

Pls P2s PZp
energy ... ... ... 91-022 5639 3:177
S .
0 0-00 0-00 0-00
0-01 775 x 101 1-94 x 10! 547 x 1073
0-03 1-83 4-54 x 101 4-37 x 102
0-06 2-57 6-03 x 10! 1-47 x 10!
0-10 2-68 5:30 x 101 3-29 x 101
0-15 227 2-31 x 10! 568 x 101
0-30 8-40 x 10! —7-84 x 10! 1-09
0-50 1-58 x 10! —1-34 1.28
0-80 1-07 x 102 —1-09 1-00
1-20 247 x 104 —4-89 x 10! 4-98 x 101
1-60 563 x 10-6 —2:08 x 10! 2-51 x 101
2-00 1-31 x 107 —8:49 x 102 1-24 x 10!
3:00 1-73 x 10-1! —8:36 x 103 2-07 x 102
4-00 2-32 x 10-15 —7-87 %10~ 3-39 x 102
5-00 6-91 x 10-19 —7-42 x 105 5-58 x 10—
With the definition
by = Qs f w¥(r) exp (ikr) d¥, (313)
(3-11) and (3-12) reduce to
By = 27y, (3-14)
B, = 27% by exp (ikr), (3-15)

where « is defined by (3-16), and
Ade=[1-2 (ba) 2172 (3-16)

To compute (3-13) itis convenient to express %,in the form (3-9) and to expand the exponen-
tial function in the well-known series of spherical waves. With the use of the orthogonality
properties of the spherical harmonics the final integrals to be evaluated are:

(a) fork #0

b= () i [P0 s () s (317

similarly for 2s,

Bapex = (73)_’% | ]’;lz | Py (1) |:~Si—r£|](€—ll@~cos (¢ | ar, (3-18)

and similarly for 2p, and 2p..
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(b) Fork =0
3\* [
b= (35) [ Putr)dr (319)

and similarly for 2s,
b2px,0 = pry,O = b2pz,o = 0. (3-20)

In the above formulae 7, is the Wigner—Seitz radius.
If we consider the OPWs as a complete system of basis functions for the conduction elec-
tron the band energy eigenvalues are given by the roots of the secular equation

IHmn'—ESmn! =0, (3'21)

where H,,, is a matrix element of the Hamiltonian between two OPWs, and §,,, is the ele-
ment of the overlap matrix between the same two functions. Owing to the translational
symmetry of the lattice, the only non-zero matrix elements are those connecting OPWs
in which the k-vectors differ by a reciprocal lattice vector G;. The secular equation is then

factorized and for each k,, of the extended zone scheme only vectors of the form

k,=k,+G;
are to be considered. With the notation
G,.=k,—k,, (3-22)
the matrix elements
S, = f (OPW, k,)* (OPW, k,) d°, (3-23)
H, = f (OPW,k,)* H(OPW,K,) d, (3-24)
turn out to be
Sn = — 34y, A L(G,) 2 by by, for m =+ n, (3-25)
S =1, t (3-26)
Hy = by 4% (o) [(,)20 3 b b B (U, G)]s (321)

where F(G) = 1+4exp[—2ni(3h+3k+20)] (with G =hG,+iG,+(G,) (3-28)

is the usual structure factors of the reciprocal lattice vector G. Also

(U, G) :73—!%] fwzzp(r) sin (|G|r) dr (|G| + 0)
e (3-29)
and (U,0) =2, f oZ(r) rdr

are the Fourier coefficients of the potential. The integrals (3-29) have been evaluated for
43 essentially different values of |G|, equivalent to 465 vectors of the reciprocal lattice. Some
values are shown in table 7.

Owing to the limitations of the computer it was decided to use for general points of the
Brillouin zone a secular equation of twelfth order. Consequently twelve reciprocal lattice
vectors had to be chosen for each point, so as to obtain in each case the twelve total vectors
k+ G of smallest length. However, since only one general program for all the points was
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used, the selection of the lattice vectors was made so as to fit the requirements of most of the
zone. Owing to the symmetry, values of the energy have to be computed only in one-twenty-
fourth of the reduced zone. This region was chosen to be the triangular prism determined by
the six points I'AMLKH of table 3, and the 12 reciprocal vectors were selected to fit, as an
average, the requirement of shortest length for most of the points of this prism.

TABLE 7. FOURIER COEFFICIENTS OF THE POTENTIAL

h k ! G| (U, G) #(G)
0 0 0 0-000 0-7068 2

1 0 0 0-642 0-5742 0

0 1 0 1-204 0-3719 0-5 +ic
2 0 0 1-284 0-3475 2

1 1 0 1-365 0-3252 1-5 tio
2 1 0 1-761 0-2444 0-5 +ia
3 0 0 1-927 0-2229 0

0 1 1 2-085 0-2069 2

1 1 1 2-182 0-1987 0

o = 3.

To determine the energy and wave function at a given K it is necessary to solve the secular
equation

(H—ES)u=0 (3-30)

finding both eigenvalues E,, and eigenvectors #,,. The solution of this problem is not straight-
forward. Standard numerical techniques for the solution of secular equations were available
only for the case of Hermitian matrices H* = H and unit overlap matrix S,, =4, In
our case the second condition was not fulfilled and the available routine could not be used.
If the matrices are multiplied by $~!it is possible to transform S into the unit matrix, but the
resulting Hamiltonian A5~ is no longer Hermitian. The only possible way of solving the
complete problem is then to find a unitary matrix 7" such that 757! = I and solve the
secular equation

(THT-'—EI)u' = o.

Finding 7'is equivalent to a Schmidt orthogonalization process, i.e. finding of a set of linear
combination of OPWs such that any two linear combinations are orthogonal. This is a very
cumbersome task which involves an unnecessary amount of trouble and requires much
running time in the computer.

However, if only eigenvalues are required, i.e. if we need only values of the energy and
not the wave functions, the matrix calculation can be reduced to an algebraic one. The
energies are given by the roots of the equation

det |H—ES| = 0. (3-31)

This is the most convenient method for our purposes. The evaluation of 12 x 12 complex
determinants only takes times of the order of one second in EDSAC 2.

The calculation of E(k) has been performed in the computer for 53 different points of
the chosen region of the Brillouin zone. The energies at the six symmetry points have been
computed separately, and full account of them is given in the next section. The calculation
was performed by means of a single program of about 1950 words which, for a given
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Ficure 2. The band energy values £ in magnesium with correlation and exchange along various
lines of the Brillouin zone. The broken lines represent single levels and the full lines double-
degenerate states. Near I"in the first and third zone the two curves represent £ as computed
with the general program (upper curve) and the more accurate group theoretical method
(lower curve).

TABLE 8. BAND ENERGY AT POINTS OF SYMMETRY

point E’ E n D S
r 0-000 0-000 o1 1 I}
0-352 0-494 - 2 1 Iy
0-455 0-597 3 1 Ir;
A4 0-116 0-178 1,2 2 4,
M 0-325 0-458 1 1 M}
0-369 0-502 2 1 My
0-684 0-875 3 1 My
0-709 0-900 4 1 M}
0-767 0-958 5 1 My
L 0-397 0-547 1,2 2 L,
0-517 0-667 3,4 2 L
K 0-425 0-578 1 1 K,
0-466 0-618 2,3 2 K
H 0-519 0-686 1,2 2 H,
0-541 © 0708 3,4 2 H,
0-731 0-898 5,6 2 H,

N

Energy values (rydbergs) without correlation and exchange, referred to the bottom of the band.
Energy values (rydbergs) with correlation and exchange, referred to the bottom of the band.
Band index.

Degeneracy of the level.

Symmetry of the level.

Lo Il

k-vector, evaluated the energy levels in the range 0 to 1 Ry counting from the bottom of
the band. This program consisted essentially of

(a) Numerical information: values of the functions Py, P,  and P,, and their correspond-
ing energies, structure factors and Fourier coefficients of the potential, intervals of integra-
tion and lattice constants.

(b) Subroutine to control the transfer to and from the auxiliary store.
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(¢) Subroutine to calculate the coefficients of the OPWs by means of equations (3-13)
to (3-20).

(d) Subroutine to build up the matrix elements of the Hamiltonian and the overlap
matrix by means of (3-25), (3:26) and (3-27).

(¢) Subroutine to evaluate the determinant (3-31) with tentative values of the energy.

(f) Subroutine tofind the roots of the determinantal equationwithanaccuracyof 104 Ry
and print them.

(g) Master routine to call the different subroutines in turn and repeat the whole process
for each value of k. :

The final values of the energy, including correlation and exchange and referred to the
bottom of the band are given in figure 2. The values of the energy at the symmetry points
as described in the next section are given in table 8.

4. GROUP-THEORY CONSIDERATIONS

The h.c.p. lattice remains invariant under a certain number of spatial transformations.
These operations form a space group G, known in the international notation as P6;/mmc
and in the Schoenflies notation as Dg,.

The main proposition of group theory that we apply to our case establishes that the eigen-

.vectors of any operator invariant under given group of transformations, may be chosen to
transform under the operations of the group according to one of its irreducible representa-
tions.

Consider first the elements of G consisting only of pure translations. These elements form
a subgroup 7T of G that is invariant and Abelian; its irreducible representations are all one-
dimensional and the corresponding eigenvectors are Bloch functions with k-vectors defined
in the first Brillouin zone. Since the Hamiltonian is invariant under the operations of T
the wave functions of the electrons in the lattice are Bloch orbitals. The corresponding
energy eigenvalues can thus be labelled by their k-vectors. This is, of course, the Bloch
theorem, basis of the electron theory of solids.

Since we are interested in the values £(k), in what follows we do not mix wave functions
of different K-vectors in the reduced zone scheme. From all the transformations of G we
are only concerned with those that leave k invariant. For a given K, these operations form
a group G* which, according to Bouckaert, Smoluchowski & Wigner (1936), describes all
the symmetry properties of the wave functions. Itis evident that G* contains 7"as an invariant
subgroup. From all the translations of T those satisfying the relation

tk = 2m (n = integer) (4-1)

form an invariant subgroup 7®. If we use Bloch functions of vector K, the representation
of all the elements of 7% is unity. Thus, we consider all the translations of 7 as the identity,
so that the factor group G¥/ T is now a group and the only one that remains to be considered.

If a given representation D of G¥/T* is n-dimensional, there are n different wave functions
which transform according to D and have the same energy eigenvalue. This means that the
existence of an n-dimensional representation yields an n-degenerate energy level. On the
other hand, a function transforming according to a one-dimensional representation gives
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in general a non-degenerate level, except where other symmetry operations of the Hamil-
tonian exist or when accidental degeneracy occurs.

Tables of characters of the G¥/ T® groups in the h.c.p. lattice were given by Herring (1942),
who also studied compatibility relations between different points of the Brillouin zone. For
the sake of simplicity consider the case k = 0. Here 7° = T and the group G°/ 7 is simply
the point group of the lattice: 6/mmm or Dg,.T If we try to determine the wave functions at
k = 0 by expansion in series of OPWs, this would in general look like

Voo = Af (OPW, 0)+ A2 (OPW, G,) + A"g (OPW, —G;) +...
=2 4§,(0PW, G,), _ (42)

where n determines the band and G, are reciprocal lattice vectors. Through group theoretical
analysis we know that each OPW transforms according to some irreducible representations
of G°/ T°. For example:

(OPW, 0) transforms according to I,

(OPW, G,) and (OPW, —G,) transform according to I's 417,

(OPW, 2G,) and (OPW, —2G,) transform according to Iy +175.
Thus for the bottom of the band, which has I} symmetry, the coefficients of (OPW, G,)
and (OPW, —G,) must be zero since for any given symmetry no contributions from other
symmetries appear. On the other hand, (OPW, 2G,) and (OPW, —2G,) will give a con-
tribution, but only through the linear combination that has I'} symmetry, i.e.

[(OPW,2G,) + (OPW, —2G,)].

In general, from all the M k-vectors differing by a reciprocal lattice vector and having the
same modulus we can form N linear combinations (N, < M in most cases N, = 1) which
have a given symmetry S, i.e. transform according to the S irreducible representation of
G*/ T*. The series for the wave function for k = 0 now looks like

o = Z Z BlIG (LCOPW S, 1; }Gi|)3 (4-3)

where (LCOPW S, 1; IGiI) denotes one of the Nglinear combinations of OPWs transforming
according to the S irreducible representation. By means of this analysis the number of
coefficients to be determined is greatly reduced and consequently the convergence of the
series greatly improved; i.e. by solving a 12 x 12 secular equation based on 12 LCOPWs,
one is effectively including a much larger number of OPWs and hence getting a better
convergence.

This method, however, is only effective for points of high symmetry in the Brillouin
zone, where G*/T* contains several symmetry operations. For a general point of the zone
G*/ T*is only the identity operator; only one irreducible representation exists and no reduc-
tion of the series is obtained for them. At points of high symmetry the group theoretical
analysis allows a much better accuracy in the determination of the energy levels. As an
example, the secular equations computed for the first three levels at k = 0 were respectively
of sixth, fourth, and fifth order, yet they are equivalent to a 43 x 43 secular equation for a

T We must note that this is not exactly true because some of the operations of G°/ T have, in addition to
the rotation, reflexion or inversion corresponding to 6/mmm, an additional translation <.

10 VoL. 255. A.
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general point. As mentioned in the preceding section, the secular equation computed for a
general point was of twelfth order. The error due to the trunaction of the series can be evalu-
ated by comparison with the high symmetry points, as shown in the next section.

The symmetry analysis of the wave functions at the six symmetry points of the h.c. p-
Brillouin zone has been carried out using the character tablest given by Herring (1942).
The values of the computed energies appear in table 8.

Some other properties of the energy values can be obtained from group theoretical con-
siderations. When we move in k-space from a symmetry point P along one line of symmetry
L, each representation of GP/T? splits in only one way into one or several representations of
GE[TE. Each of these representations varies continuously along L. If L ends in another
symmetry point P’, one or several representations of GE/ T coallesce into one given represen-
tation of G¥/T?. Thus, if a given symmetry P, of P can be transformed into a symmetry
P of P’ continuously along L we say that P, and P}, are compatible along L. Compatibility
relations between symmetry points and the irreducible representations along the symmetry

TABLE 9. COMPATIBILITY RELATIONS BETWEEN POINTS OF SYMMETRY ALONG
SYMMETRY LINES

to It Iy Iy A4 Mf M; Mf My LKk, K, H H, H,

ry — - — 4 z z — - — T, 7, — — —
ry — — — 4, — — z @z — I —
Iy — = - 4 z z - — — — T, — — —
4, Ay, Ay Ay — — - - _ Ry, 3 - - Sy Sy Sy
D D T T 4 T, T, — — —
My X - X = = = = = U — 7, — — —
My - = = = = = =, SR —
M; — X = = = = = — —_ = = = —
L - “‘ - Ri,3 U,y U, U,y Uy, - - - Sy S S
K, T, - — — T, — = — — — - P, — —
K, T - T, — 1 T, — — — — — — P, P
H, - - - Sy - — — - Sy Py, — - - -
H — - — 8 — — — — — Py - = =
H - — — 8 — — — — i

S and P, are two-dimensional representations.
R, and R; appear together due to time reversal.

lines are given in table 9. The help of these relations in drawing the E(k) curves comes from
the two fundamental properties:

(a) Two energy levels at different symmetry points can be joined by continuous values
of E(k) along a symmetry line only if they are compatible.

(b) Two curves E(K) with the same symmetry along a symmetry line never cross each
other.

Further useful information obtained from group theoretical considerations is the
degeneracy of the levels. Degenerate levels at a given k can be classified in three different
types:

(a) degeneracy due to n-dimensional representations of G¥/ T,

T Owing to the length of the tables of coefficients of the linear combinations of OPWs, they are omitted
in the present paper. They can be obtained from the author by request.
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(b) degeneracy due to time reversal symmetry,

(¢) accidental degeneracy.

The first class only occurs at the symmetry points I, 4, L, K, H, and along the lines HK, AH
and HL, where multiple representations of G¥/T™ exist; at A, L and H and along AH and
HL all the representations are two- or four-dimensional.

Time reversal symmetry introduces additional degeneracies. By applying Herring’s
test (19374a) to study the doubling of levels (without spin) due to time reversal, it is readily
shown that at a general point of the hexagonal face there is an additional pairing of levels.
This is also true for the AL line where either R, and R; or R, and R, appear always
together. :

The fact that at the hexagonal face all the levels are degenerate implies that no energy
gap exists there, and the energy as well as the wave functions change continuously going
across the AHL plane. To represent energy surfaces it is thus convenient to take in K-space
not simply a Brillouin zone but a region formed by two Brillouin zones contacting through
their hexagonal faces. This representation has been used in the present work to describe
the Fermi surface; it has been used before by Harrison (1960). However, it must be pointed
out that when spin-orbit effects are taken into account, these considerations are no longer
valid. Instead of considering the single groups given by Herring (1942), the analysis carried
above must be done with the so-called double groups (Elliott 1954). It is thus proved that
the bands no longer stick together at the hexagonal face, except along the lines AL. The pre-
sence of the spin-orbit term in the Hamiltonian is responsible for the existence of additional
band gaps which, although very small (Cohen & Falicov 1960), introduce fundamental
changes in the topology of the Fermi surface. However, for the purposes of comparison
with already existing work we keep the double-zone representation pointing out in § 6 the
main consequences of spin-orbit coupling. Full account of these effects will be published
clsewhere.

The third kind of degeneracy, i.e. accidental degeneracy, has also been described by
Herring (19376) and is due to the compatibility relations between levels at points of sym-
metry. For example, in the present calculation the four non-degenerate levels Iy, Iy ;
My, My are compatible along I'M only in pairs I'y My, I'y M5 according to table 9. Thus
along I'M there are two continuous curves E(k) joining the members of each pair: the sym-
metry of these lines are X; and X}, respectively. Owing to the values of the energy at the
ends of these lines, they must cross each other at some intermediate point, giving rise to a
degenerate level. '

Several accidental degeneracies appear in figure 2. They only occur at symmetry lines,
symmetry planes or zone boundaries where at least two different irreducible representations
of G¥/T* exist.

To end this section we may mention that the compatibility relations together with the
periodicity of the system and the continuity of £(K) gives useful information about the slopes
of E(K) curves at points of symmetry. For example:

(a) E(K) has zero slope at M along the three symmetry lines I'M, MK, ML, i.c. E(k)
has an extremum or a saddle point at M;

(b) along I'K the slope of each curve E(K) at K is equal to the slope of one of the curves
E(k) along KM which has the same value at K;

10-2
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(¢) Each pair of curves that comes to the same value of 4 along I'4, have their slopes of
equal modulus and opposite sign.

Several other similar relations are found ; they have been employed in drawing the curves
of figure 2.

5. ERRORS

The final errors in the values E(k) come from the following sources:

(a) the errors in the potential,

(b) rounding off and truncation errors in the numerical procedures employed,

(¢) the overlap of the atomic-like wave functions,

(d) the approximation of the infinite-order secular equation by one of finite order.

The errors in the evaluation of the lattice potential have been discussed in §2. From the
eleven items enumerated, (a), (b), (¢) and (g) give no appreciable error. Item (d) gives
negligible error for the s-like states, and yields an error of less than 0-01 Ry for states of other
symmetries. Items (¢) and (g) can be neglected without appreciable error. The main error
comes from the exchange and correlation terms (4) and (z) and has been estimated to be
of the order of 0:02Ry. For items (f) and (k) we may conclude from Heine’s rudimentary
self-consistency for aluminium that our error is not more than 0-01 Ry. Consequently,
the total error due to the potential is about 0-03 Ry.

Rounding off and truncation errors were at all stages of the calculation negligibly small.
The long storage locations of EDSAC 2 and the standard routines used for the calculation
as well as the chosen intervals of integration ensure an accuracy of the numerical results
such that no appreciable error was introduced.

Consider now the error introduced by the assumptions (3-3), (3-4) and (3-5). If we keep
the definition of OPWs given in § 3 and remove the above-mentioned conditions, the energy
associated with a single OPWis now given by

f (OPW,k,)* H(OPW,K,,) d3r

. (5.1)
f (OPW, Kk, )* (OPW, k) d*

and the error to be considered is the difference between (5-1) and the matrix element H,,,,
as given by (3-27). The calculation of this error implies the evaluation of three different kinds
of integrals:

Jur =R, () a, (52)
f U(r—R,) u,(r) exp (—ikr) d¥r, (5-3)
Jue-R)urc-Ryumar, (5+4)

where R, and R are vectors joining two different ion sites. The evaluation of these integrals
is not straightforward and some approximations must be made. Itiseasilyseen thatthe main
contribution comes from (5-3) and ¢ = 25, 2p. An estimation of that integral shows that the
total amount of correction is of the order of, but less than 0-003 Ry, which is negligible
compared with the other errors.
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The main error in the computation seems to be the convergence of the series, i.e. the error
caused by approximating the infinite-order secular equation by the first twelve terms. To
evaluate this error, values of the energy at symmetry points extrapolated from values along
symmetry lines were compared with more accurate computations using the group theoretical
analysis of § 4. The results obtained are shown in table 10. The errors are in general less than
0-015 Ry, except for two levels at I" where the discrepancies appear puzzlingly large.

TABLE 10. RATE OF CONVERGENCE OF SECULAR EQUATIONS

value of best number of value of
approximation OPWs 12x12

level evaluated involved secular eqn. error
Iy 0-000 43 0-022 —0-022
Iy 0-352 43 0-353 —0-001
rr 0-455 43 0-489 —0-034
M 0-325 24 0-332 —0-007
Mz 0-369 24 0-381 —-0-012
Mg 0-684 24 0-685 —0-001
MF 0-709 24 0-710 —0-001
K, 0-425 48 0-430 —0-005
K, 0-466 48 0-478 —-0-012
4, 0-116 28 0-121 —0-005
L, 0-397 16 0-406 —0-009
L, 0-517 16 0-530 —-0-013

TABLE 11. RATE OF CONVERGENCE OF SECULAR EQUATIONS

order value of energy
secular number of (arbitrary
level equation OPW’s origin) difference
I'f 1 1 —0-1485 —
s-like 2 9 —0-1508 0-0023
3 11 —0-1545 0-0037
4 23 —0-1718 0-0173
5 35 —0-1764 0-0046
6 43 —0-1824 0-0060
Iy 1 3 0-1698 —
p-like 2 23 0-1669 0-0029
3 35 0-1659 0-0010
4 43 0-1656 0-0003
Iy 1 3 0-3611 —
s-like 2 9 - 0-2976 0-0635
3 23 0-2836 0-0140
4 35 0-2731 0-0105
5 43 0-2730 0-0001

A separate test was carried out for the three /" levels to check the convergence of the secular
equation. Values of the energy were evaluated with different approximations and the results
are shown in table 11. We can see that while the convergence is very good for Iy (p-like
symmetry), for the two s-like levels the series converges slowly. No satisfactory explanation
of this puzzle has been found. Ignoring these two anomalous values we can estimate the
error due to convergence to be about 0-015 Ry. Then, in general, summing up all the con-
tributions, the calculated values of the band energies as expressed in figure 2 have an
accuracy of about 0-035 Ry.
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6. FERMI ENERGY AND FERMI SURFACE

The Fermi surface, according to the independent particle approach, is the surface in k-
space that separates unoccupied from occupied states when the system is at 0 °K. The most
general method of determining the surface of magnesium, once the function E(K) is known,
consists of determining the surfaces £(k) = E and calculating the value E, = £, for which
the volume in k-space occupied by the states E(K) < Eis equal to twice the volume of the
Brillouin zone. This method involves the calculation of E(K) at many points of the zone
and consequently it requires a long running time in the computer. However, since the
accuracy of the present calculation is of the order 0-03 Ry, it is possible to determine the
Fermi energy £, by some approximate methods which give results within the specified error.
The information concerning the value of £, in magnesium was obtained by comparison
with the free electron model and checked against experimental evidence from X-ray
emission spectra and anomalous skin effect data.

In the free-electron model it is assumed that there is no net periodic potential due to the
lattice; this only gives rise to the existence of the Brillouin zone and neutralizes the effect
of the cloud of negative charge due to the conduction electrons. The single particle energies

are then expressed by E(K) =R2+7, (6-1)

where V is the correlation and exchange contribution. We take account of this by means
of the Bohm & Pines approximation as given by (2-14) and table 5. The surfaces of con-
stant energy in this model are spheres |k| = constant. These spheres must be rearranged into
more complicated surfaces when they overlap into a Brillouin zone other than the first

(Harrison 1960). For k| = 0-7274 (6-2)

the volume of the corresponding sphere is equal to twice the volume of the Brillouin zone,
i.e. the sphere of this radius is the Fermi surface. Inserting this value of |k| into (6-1) and
measuring energies from the bottom of the band k = 0, we obtain the value of the Fermi
energy for the free electron model,
Efree — 0-688 Ry. (63)
Comparison of E(k) as calculated with the corresponding curves derived from (6-1) shows
an apparent similarity between both; the calculated band structure, except for the splitting
of some degeneracies, looks in general like the free-electron model and the effective mass over
the conduction band as a whole is very close to the free-clectron mass. Consequently the
Fermi energy must be very near the free-electron value (6-3). We have compared the values
of the computed E(K) at the symmetry points with those given by the free-clectron model,
and, as an average, the former are about 0-01 Ry smaller than the latter. This would suggest
that the Fermi level must be decreased by about the same amount, giving
E. ~ 0-68 Ry. (6-4)
We have confirmed the accuracy of this value by using experimental information obtained
from the X-ray emission spectra. Skinner (1939) and Cady & Tomboulian (1941) have
measured the magnesium L 111 emission spectrum. This corresponds to transitions between
the conduction band and the 2p core level. The total width of the spectrum should theoretic-
ally give the width of the conduction band, from the bottom up to the Fermi level. But
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in fact the actual spectra present a long tail on the low-energy side owing to emission of
Auger electrons. It would be necessary then to subtract this effect by means of a suitable
extrapolation, but the results would not be reliable due to the doubts existing in the choice
of the extrapolating method. Moreover, it is known that the single-particle approach is not
valid for states far from the Fermi surface and so the low energy part of the spectrum cannot
be fully explained in terms of that model.

H \ ’//A 7 ‘‘‘‘‘‘‘‘ T\\

—
—
-
o —

B T
- —
g

Ficure 3. The double zone in k-space chosen to represent the Fermi surface.

The L spectrum gives information only about the s- or d-like electrons. The appear-
ance in the experimental curve of a high and narrow peak on the high-energy side suggests
the existence of pockets of electrons with the proper symmetry in the third and fourth zone.
These can easily be identified with the electrons near I'; and K, which have the desired
symmetry. The extrapolation of the peak gives a total width of about 0-08 Ry. Consequently
the Fermi level must be about 0-08 Ry over the value of the energy at I';, which gives
approximately the same value (6-4) obtained by comparison with the free-electron model.

Finally, measurements of the area of the Fermi surface in magnesium by means of ano-
malous skin effect measurements (Fawcett 1961) show that fairly good agreement between
theory and experiment is achieved if the Fermi level is taken to be about 0-68 Ry. We may
conclude then that the value obtained by comparison with the free-electron model gives
the Fermi energy within the accuracy obtained for the band energy values.

As mentioned in §4, to describe the Fermi surface we choose a zone in k-space equal to
two Brillouin zones making contact with each other through their hexagonal faces; this is
shown in figure 3. Since the calculated band structure is similar to that resulting from the
free-electron model, the Fermi surfaces in both cases must necessarily be alike. The free
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electron Fermi surface for a divalent metal in the h.c.p. structure of perfect packing ratio
has been published by Harrison (1960). The surface resulting from our calculation differs
from it, apart from a change in the ¢/a ratio and the relative size of each piece, mainly in the
smoothing out of the sharp edges caused by the intersection of different parts of the re-
arranged sphere. '

If the conduction electrons in magnesium were tightly bound, the first double zone
would be completely full while the third and fourth would be empty. Since this is not the
case, the first double zone has a region not occupied by electrons; we call this the region of
holes or the ‘monster’. On the other hand, some electrons occupy several bits of the third
and fourth zone which are called the ‘pockets’ of electrons. It is evident that the volume
of the ‘monster’ equals the total volume of the pockets of electrons.

In the calculated structure there are nine pockets of three different kinds:

(a) One pocket of electrons around I". This corresponds to the I'; level and the electrons
are mainly s-like. The pocket has symmetry 6/mmm around I” and its approximate shape
is that of an oblate spheroid. The approximate radii from I” to the surface are

Too,L = 0058 I'— A
10,0 = 0255 I'—- M} third zone,
"1,0=0253 I'>K
where the indices refer to the reciprocal lattice. These values are only approximate and we
can estimate the error to be about 20 %,. For comparison the size of the Brillouin zone is
given in table 3.
(b) Two identical pockets around K. They correspond to one of the branches of the

double level K. They have symmetry 6 around K. Each pocket looks like a cigar of triangle-
like section. The radii from K are

1.0 = 0073 K- I} third zone,

within a 20 9%, accuracy.

(c) Six identical pockets around L. They correspond to the second L, level. Their sym-
metry around L is mm? and their shape may resemble that of a butter bean. The radii from
L, within an accuracy of about 50 %, are

To0,1 = 0029 L — M fourth zone,
To0,1 = 0:050 L — M third zone,
1‘10’0 = 0'022 L —> A

}third and fourth zones.
7‘12,0 —_ O'O4:3 L'—%H

The various pockets of electrons described above are shown in figure 4, where 5/12 of the
double Brillouin zone has been represented in order to exhibit sections of the surface by
planes I'’AML and I'AKH.

In contrast to the electrons of the third and fourth zone, the holes in the first and second
zone are in a single, multiply-connected region of symmetry 6/mmm around I" which makes
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contact with the zone boundaries near the twelve I points. This ‘monster’ can be qualita-
tively described as consisting of:
(a) A hexagonal shaped ring placed in the plane I’/KAM. The radii from " are approxi-
mately
10,0 direction I'— M internal radius 0-415,
external radius 0-452;

11,0 direction I K- internal radius 0-405,
external radius 0-606.

The total height of the ring is about 0-125.

\

U

72

AT

S,

/

Ficure 4. The Fermi surface in the third and fourth zone showing sections of the various pockets
of electrons. The part of the zone shown here is that drawn in heavy lines in figure 3.

(b) Twelve tentacles coming from the top and bottom of the ring and making contacts
with the zone boundaries in very small regions near the A points of the double Brillouin zone.
The approximate dimensions of the areas of contact, measuring from H, are

To0,1 = 0:044 H — K first zone,
To0,1 = 0:044 H —> K second zone,

T.o=0012 H-— L first and second zones.

11 VoL. 255. A.
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The ‘monster’ is shown in figure 5. Figure 6 shows sections of the hole surface with various
planes (00, 1) at different heights; we have taken a repeated zone scheme in order to show
how three tentacles belonging to three different zones converge to the common H point
where they join each other.

Ficure 5. The Fermi surface of magnesium in the part of the first and
second zone shown by heavy lines in figure 3.

It is interesting to note that due to the presence of the double level P, along HK and to
the existence of an accidental degeneracy along I'K of the two levels 7', and T, near the
Fermi level the cigar-like pockets and the monster run very near each other in the 'KAH
planes and it is very likely that they even have a point of contact in that plane, near the
I'KM plane, giving rise to a kink in both parts of the Fermi surface. The implication of these
nearly degenerate levels has been discussed by Cohen & Falicov (1961) in connexion of
clectronic transitions between different pieces of the Fermi surface in the presence of high
magnetic fields.

Another property of the Fermi surface of considerable interest is the existence of the so-
called ‘open orbits’, i.e. sections of the surface with planes giving rise to intersection lines
which do not close themselves. These open orbits play a fundamental role in determining
the galvanomagnetic properties of the metal (Lifshitz, Azbel & Kaganov 1956; Lifshitz &
Peschanskii 1958).
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From our description of the Fermi surface it is evident that only the ‘monster’ may give
rise to open orbits, the electron pieces being closed surfaces. If spin-orbit coupling is
neglected, the open orbits can only have a general direction in the basal plane. A careful
study of the surface shows that they can only be obtained by sections with planes (11,/) and
their general direction is [10, 0]. '

0
g
In |

O

)
.. }@

Ficure 6. Sections of the ‘monster’ in the repeated zone scheme
with planes (00, 1) at various heights.

An estimate based on the given dimensions of the surface gives open orbits for planes
(11,) whose normals form an angle with the ¢-axis greater than 71° and smaller than
81°. However, this estimate is very sensitive to the dimensions of the surface. The given
range of angles increases if

(a) the areas of contact of the monster with the zone boundaries increase,

(b) the height of the ring increases, or

(¢) the internal radius of the ring decreases. :

If the Fermi level is displaced slightly upwards, these three factors all combine to reduce
greatly the range of angles giving open orbits. In the extreme cases of either the H, energy
level or the degenerate level of the I'M line being below the Fermi energy, the single sheet
of the monster collapses into several unconnected sheets from which no open orbits could
be obtained. This is not expected to be the actual case, since experimental evidence indi-
cates the existence of a single, multiply-connected, sheet of surface due to the holes (Gordon
et al. 1960).

11-2
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When spin-orbit coupling is taken into account, the sticking together of the bands in the
ALH planc 1> removed and the double-zone scheme ordinarily used in the representation
of the Fermi surface is no longer valid. This has practically no consequence in the descrip-
tion of the electron pockets, but changes fundamentally the topology of the ‘monster’.
The small pockets of holes in the first zone must be removed from the ‘monster’, and the
latter then repeats itself along the ¢ axis as shown in figure 7. The new hole surface shows
again the same open orbits described above, but another kind of open orbits appear in
addition. These have the general direction [00, 1] and are obtained by section with any
plane (%, 0) parallel to the ¢ axis.

Ficure 7. The change in the connectivity properties of the ‘monster’ due to spin-orbit coupling
(a) the ‘without spin’ case; () the ‘monster’ when spin-orbit coupling is taken into account.
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